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Abstract 
 

Introduction: There is a pressing need to improve computer-based treatments for aphasia to 
increase access to long-term effective evidence-based interventions. The current single case 
design incorporated two learning principles, adaptive distributed practice and stimuli variability, 
to promote acquisition, retention, and generalization of words in a self-managed computer-based 
anomia treatment.   
Methods: Two participants with post-stroke aphasia completed a 12-week adaptive distributed 
practice naming intervention in a single-case experimental design. Stimuli variability was 
manipulated in three experimental conditions: high exemplar variability, low exemplar 
variability, and verbal description prompt balanced across 120 trained words. Outcomes were 
assessed at 1-week, 1-month, and 3-months post-treatment. Statistical comparisons and effect 
sizes measured in the number of words acquired, generalized, and retained were estimated using 
Bayesian generalized mixed-effect models.   
Results: Participants showed large and robust acquisition, generalization, and retention effects. 
Out of 120 trained words, participant 1 acquired ~77 words (trained picture exemplars) and ~63 
generalization words (untrained picture exemplars of treated words). Similarly, participant 2 
acquired ~57 trained words and ~48 generalization words. There was no reliable change in 
untrained control words for either participant. Stimuli variability did not show practically 
meaningful effects. 
Conclusions:  These case studies suggest that adaptive distributed practice is an effective 
method for re-training more words than typically targeted in anomia treatment research (~47 
words on average per Snell et al., 2010). Generalization across experimental conditions provided 
evidence for improved lexical access beyond what could be attributed to simple stimulus-
response mapping. These effects were obtained using free, open-source flashcard software in a 
clinically feasible, asynchronous format, thereby minimizing clinical implementation barriers. 
Larger-scale clinical trials are required to replicate and extend these effects.
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1. Introduction  
 

Approximately one-third of stroke survivors are diagnosed with aphasia, and more than two 
million people with aphasia are currently living in the United States (Simmons-Mackie & 
Cherney, 2018). Aphasia negatively affects communication ability, life participation, and long-
term quality of life (Cruice et al., 2006; Dalemans et al., 2010). Although people with aphasia 
continue to improve their communication abilities in response to long-term speech and language 
pathology services (Allen et al., 2012; Brady et al., 2012; Brady et al., 2016), access to aphasia 
rehabilitation services is often limited by constraints such as insurance coverage or transportation 
(Ostwald et al., 2009). For example, Cavanaugh et al. (2021) reported that people with aphasia 
received a median of 10 outpatient sessions of speech-language pathology treatment in their first 
year post-stroke. As a result, there is a critical need to develop alternative methods for accessing 
evidence-based aphasia treatment alongside or in lieu of existing access to clinical rehabilitation 
services.  

Self-managed, computer-based treatments are one promising option for offering low-cost, 
accessible, and prolonged interventions for people with aphasia. Computer-based treatments 
have been developed for aphasia for independent practice or supplemental treatment purposes 
showing promising results (e.g., Davis & Copeland, 2006; Meltzer et al., 2018; Stark & 
Warburton, 2018). When self-managed or administered with a small degree of support from 
caregivers, computer-based interventions can help people with aphasia regain independence and 
agency during their recovery process (Palmer et al., 2020; Palmer et al., 2012). Moreover, cost 
analyses have shown that these interventions can be less expensive than standard care (Wenke et 
al., 2014) because they increase the total amount of direct treatment while reducing the costs of 
face-to-face interventions.  

Despite the established benefits of current computer-based treatments (e.g., Cherney, 
2010; Palmer et al., 2020), there is a need to improve their effectiveness and treatment efficiency 
(i.e., the largest-possible treatment outcomes in the shortest amount of treatment time). 
Treatment efficiency is particularly important because self-managed treatment comes with an 
opportunity cost: every hour spent on self-managed treatment is an hour not spent in social 
communication environments or meaningful life activities. Computer-based treatments may be 
particularly well-suited to improving treatment efficiency, as they have the capability of 
implementing complex algorithms focused on optimizing the “return on investment” for time 
spent in therapy.  

To improve treatment efficiency in aphasia treatment, computerized treatments should be 
informed by a theoretical understanding of aphasia recovery and the processes that promote 
learning in aphasia. The current study incorporated two principles from the learning literature 
thought to improve acquisition, retention, and generalization: distributed practice and stimuli 
variability. We chose to focus on anomia (i.e., word-finding deficits) treatment since anomia is a 
hallmark of aphasia (Goodglass, 1980) and endorsed as a primary frustration (e.g., Johansson et 
al., 2012). We examined distributed practice and stimuli variability by implementing a self-
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managed computer-based anomia treatment using Anki open-source flashcard software1. This 
software incorporates adaptive distributed practice and enables the customization of multimedia 
flashcards, which allowed us to manipulate the stimuli variability of trained items.  
1.1 Learning effects of distributed practice in neurotypicals and people with aphasia.  
The effects of spaced practice on learning have a long history. In general, distributed practice, 
where trials are more spaced out over time, has been found to enhance learning and retention in a 
wide range of tasks compared to massed practice, where trials are spaced more closely together 
in time (Karpicke, 2017). The distributed practice effect is one of the most replicated and reliable 
findings in the learning literature (Cepeda et al., 2006; Delaney et al., 2010; Toppino & Gerbier, 
2014). One influential account of this effect is that distributed practice allows for memory decay 
during learning, which increases the effort required for subsequent retrieval. The increased effort 
has been hypothesized to provide a desirable difficulty, where successful effortful retrieval 
attempts improve memory consolidation and encoding (Bjork & Bjork, 1992). 

Middleton et al. (2020) recently published a comprehensive review summarizing the 
evidence supporting distributed practice for anomia treatment in aphasia. They reported that 
spacing practice trials over time (Middleton et al., 2019; Middleton et al., 2016), increasing trial 
spacing within a session (Middleton et al., 2016), increasing spacing across sessions (Schuchard 
et al., 2020), and increasing the time between learning sessions (Ramsberger & Marie, 2007; 
Sage et al., 2011) can all enhance learning and retention during anomia treatment. 

Recent research in education and language learning has begun to explore various 
adaptive distributed practice algorithms with promising results (Eglington & Pavlik Jr, 2020; 
Settles & Meeder, 2016; Tabibian et al., 2017; Tabibian et al., 2019). In adaptive distributed 
practice, item scheduling depends on ongoing performance accuracy, where difficult-to-learn 
items receive more frequent practice than more easily learned items over time. One common 
implementation of adaptive distributed practice is based on the forgetting curve model of 
memory decay (Ebbinghaus, 1885; Murre & Dros, 2015). The forgetting curve describes a 
phenomenon in which memory retention decreases over time unless learned information is re-
reviewed and re-retrieved.  

Anki is an open-source flashcard software program that schedules reviews using adaptive 
distributed practice. Each flashcard goes through an initial “learning phase” where flashcards are 
practiced frequently until they are answered accurately a certain number of times (the user self-
rates accuracy, which requires error awareness). Then, flashcards are scheduled at increasingly 
expanding intervals determined by an algorithm based on the Ebbinghaus forgetting curve 
(Ankiweb, 2006; Ebbinghaus, 1885). If at a future point, a given flashcard is answered 
incorrectly, it goes back through a “re-learning phase” where it has to be answered correctly 
again a certain number of times before returning to expanding interval practice (Figure 1). 
Flashcard A in Figure 1 represents a word that is easily re-acquired, which quickly moves 
through the learning phase into expanding interval practice without subsequent memory lapses. 
In contrast, Flashcard B represents a harder-to-acquire word, requiring more initial practice and 

 
1 https://apps.ankiweb.net/ 
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multiple times passing through a re-learning phase. For both flashcards, final accuracy during the 
practice period is consistently high, but different practice trajectories are required to arrive at the 
same final criteria (i.e., 28 reviews for Flashcard A vs. 42 reviews for Flashcard B). Anki has 
been shown to be effective in other learning contexts, such as academic vocabulary learning, 
second language acquisition (Altiner, 2019; Rana et al., 2020; Seibert Hanson & Brown, 2020), 
and anomia treatment in primary progressive aphasia (Evans et al., 2016).  
 

   
Figure 1. Schematic representation of adaptive distributed practice for an easy word (flashcard 
A) and a more difficult word (flashcard B). Correct responses lengthen retrieval intervals while 
errors shorten them.  
 

The potential positive impact of adaptive distributed practice on anomia treatment 
outcomes is three-fold. First, adjusting practice schedules at the item level, based on ongoing 
performance, may maximize the benefits of effortful retrieval (Middleton et al., 2015) while 
minimizing the potential costs of failed retrieval attempts and subsequent error learning (Evans 
et al., 2019). In other words, adaptive distributed practice may maximize the strength of memory 
encoding per trial by maintaining item-specific desirable difficulty. Second, adaptive distributed 
practice increases the total number of items that may be practiced within a limited period of time 
since items are only scheduled when necessary. Third, by scheduling each trial based on item-
specific performance, this approach dynamically adjusts treatment difficulty to meet individual 
needs, which may provide a practical approach to precision medicine for anomia treatment. For 
example, people with more severe aphasia may receive shorter spacing and fewer additional 
items based on their ongoing performance.  

In sum, adaptive distributed practice may lead to better treatment efficiency and long-
term retention. While anomia interventions in aphasia research typically train small sets of words 
(e.g., 47 words on average, with a larger cluster of anomia studies training between 30-40 words; 
Snell et al., 2010), adaptive distributed practice could allow more words to be trained. In 
addition, the effects of aphasia treatment are generally not well maintained (e.g., Menahemi-
Falkov et al., 2021), but a treatment based on the forgetting curve model of memory decay has 
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the potential to engender lasting retention effects. However, the benefits of adaptive distributed 
practice for anomia treatment have not been examined in stroke-related aphasia. Also, algorithms 
for adaptive distributed practice are calibrated based on neurotypical learning patterns, and it's 
unknown if they are well suited for people with aphasia. Therefore, the first aim of the current 
work is to evaluate the initial efficacy of an adaptive distributed practice intervention on 
acquisition, retention, and generalization of more words than are typically targeted in anomia 
treatment research. 
 
1.2 Stimuli variability as a facilitator of generalization in aphasia 
Although adaptive distributed practice may improve treatment efficiency and retention, such 
gains would be even more meaningful if they generalize outside the trained context. Aphasia 
researchers have distinguished between “within-level generalization,” the change to untreated 
stimuli within the same linguistic level as the treatment (e.g., from treated words to untreated 
words, or from trained exemplars to untrained exemplars of the same word), and “across-level 
generalization,” the change at a linguistic level different to the treatment (e.g., from words to 
sentences; Webster et al., 2015). Although direct treatment effects on treated words have 
generally been robust in published anomia interventions (e.g., Wisenburn & Mahoney, 2009), 
effects of within and across-level generalization have generally been modest (e.g., Carragher et 
al., 2013; Kendall et al., 2015; Quique et al., 2019; Thompson, 1989; Webster et al., 2015).  

One potential reason for these modest generalization outcomes is that many anomia 
treatments rely on naming a single picture exemplar of the target word during treatment and 
assessment (e.g., Gravier et al., 2018; Kendall et al., 2019; Middleton et al., 2015). Regardless of 
other active ingredients of the therapy, overtraining a single picture exemplar through stimulus-
response mapping could create a potent memory retrieval cue (e.g., Holland, 2008; Spence, 
1950; Thorndike, 1898) that may limit within and across-level generalization.  

Early knowledge transfer literature suggested that increasing the number and variability 
of exemplars can benefit learning and generalization (Gick & Holyoak, 1987 for a summary). 
Similarly, the developmental literature (e.g., Aguilar et al., 2018; Perry et al., 2010; Twomey et 
al., 2014) and applied behavioral analysis (e.g., Stokes & Baer, 1977; Stokes & Osnes, 2016; 
Swan et al., 2016) recommend the use of multiple exemplars to promote learning and 
generalization. Based on some of these findings, Thompson (1989) suggested that training 
multiple examples might promote generalization in aphasia. However, it is possible that 
increasing exemplar variability could reduce treatment efficiency for acquisition if additional 
time is required to train multiple exemplars to the same level of performance. Therefore, the 
second aim of the current work is to evaluate the effects of stimulus variability (defined here in 
terms of exemplar number and prompt type) on acquisition, retention, and within-level 
generalization. 
 
1.3 The current study 
In summary, while previous anomia treatment research has focused on training small sets of 
words (47 on average; Snell et al., 2010) in the hopes of inducing generalization effects (e.g., 
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Boyle, 2010; Boyle, 2011; Webster et al., 2015), the current work proposes a novel alternative: 
using adaptive distributed practice to directly train a larger set of words in a treatment-efficient 
manner. In addition, mechanisms thought to improve generalization should be explored to 
improve functional outcomes. Therefore, we evaluated the initial efficacy of adaptive distributed 
practice and stimuli variability by implementing a self-managed anomia treatment using Anki 
open-source flashcard software. 
 

Prediction 1: Anki-based anomia treatment will lead to efficient acquisition, retention, 
and within-level generalization to untrained picture exemplars of trained words for more words 
than are typically targeted in anomia treatment research. In addition, we do not predict within-
level generalization to untreated words, which serve as a control condition. 
 

Prediction 2: Increasing stimuli variability (i.e., more picture exemplars or a verbal 
description compared to training only a single picture exemplar) will lead to improved within-
level generalization to untrained picture exemplars of trained words for both acquisition and 
retention to a practically meaningful degree. 

 
2. Methods 

 
2.1 Study design. 
We used an A-B design with control and follow-up (Tate & Perdices, 2019, p. 93). Each 
participant was probed during 3 baseline sessions, 12 weekly treatment sessions, and 3 follow-up 
sessions. Follow-up sessions were planned for 1 week, 1 month, and 3 months post-treatment.  
 
2.2 Participants 
Participants were recruited from the University of Pittsburgh program, from the Aphasia 
Recovery Connection online community, and from local clinician referrals. The Institutional 
Review Board at the University of Pittsburgh approved the study (IRB# 19060039). Informed 
consent was obtained before any research procedures were completed. Enrolled participants did 
not receive concurrent speech-language treatment for the duration of the study.  

For initial assessment, participants completed the Comprehensive Aphasia Test (CAT; 
Swinburn et al., 2004), the Cactus and Camel Test (CCT; Adlam et al., 2010; Bozeat et al., 
2000), and the Duffy protocol (Duffy, 2005). The first and third authors administered these 
assessments. While assessments were initially administered in-person at a lab at the University of 
Pittsburgh, the study protocol shifted to online administration part-way through the study due to 
COVID-19. 
 Participants were enrolled in this study using a two-stage enrollment criteria. In the first 
stage, participants were required to have an existing diagnosis of aphasia secondary to a stroke at 
least six months post-onset. The presence of aphasia was confirmed via initial assessment using 
the CAT, where participants had to demonstrate impairment on at least 2/8 test domains to 
qualify. Participants needed to be native English speakers. Participants were excluded if they 



6 
 

reported a concomitant history of a neurodegenerative disorder or showed a severe motor speech 
disorder, as measured by the Duffy protocol (Duffy, 2005). To meet the second stage of 
enrollment criteria, participants had to demonstrate the ability to complete all treatment steps 
independently and with fidelity following four synchronous training sessions (see Treatment 
Procedures below). This was required because the intervention relied on self-managed 
asynchronous independent home practice during the last ten weeks of the treatment phase, where 
participants had to self-rate their performance accurately in the Anki software for the adaptive 
algorithms to function appropriately.  

Seven people with aphasia were recruited, three met the first stage criteria, and two of 
which met the second stage criteria. Participant 1 was a 50-year-old male with aphasia from a 
left hemisphere stroke of approximately 24 months post-onset. His scores on the CAT suggested 
moderate language impairments (mean T-score = 46.8). He demonstrated more severe 
impairments in repetition (T-score = 32) relative to his overall severity. He demonstrated relative 
strengths in naming (T-score = 54). At the time of enrollment, he reported that he was 
independent in activities such as scheduling sessions, driving, and attending in-person or online 
sessions. He also demonstrated strong motivation to participate in treatment.  

Participant 2 was a 53-year-old male with aphasia from a left hemisphere stroke of 
approximately 18 months post-onset. His scores on the CAT suggested moderate language 
impairments (mean T-score = 45.7). His scores on the CAT indicated more severe impairments 
in spoken comprehension (mean T-score = 38) relative to his overall severity. He demonstrated 
relative strengths in reading (mean T-score = 49). He required the support of his spouse to 
schedule online sessions. Baseline testing on the CAT and CCT is shown in Table 2. Naming 
probe accuracy for each participant by session and treatment condition is presented in Figure 3. 
 
2.3 Treatment conditions and stimuli development  
This study consisted of one untreated control condition and three experimental conditions: high 
exemplar variability, low exemplar variability, and verbal description prompt (see Figure 2). 
Each condition included 40 items, for a total of 120 treated and 40 control items (total n =160 
items per participant). In the low exemplar variability condition, each item was trained using one 
picture exemplar. This low-variability condition was intended to match typical anomia treatment 
protocols, which might lead to reduced within-level generalization by over-training specific 
stimulus-response mappings. In contrast, in the high exemplar variability condition, each item 
was trained using three picture exemplars. This was intended to increase stimuli variability and 
promote within-level generalization (e.g., Aguilar et al., 2018; Perry et al., 2010; Twomey et al., 
2014). In the verbal description condition, each item was trained by presenting a short verbal 
description prompt in both written and auditory formats. This was intended to increase stimuli 
variability by providing a prompt without relying on trained pictures (Edmonds et al., 2014; 
Edmonds et al., 2009), which also increased the overall complexity of the stimulus-response 
mapping.  
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Figure 2. Examples of the experimental conditions, including the front of the flashcard, the back, 
and the picture exemplars used for probes.  
  

In order to select 160 items for each condition, participants who met the first stage of 
enrollment criteria were asked to name a battery of 362 noun pictures for stimuli selection. This 
naming battery was assembled from publicly available normative picture databases (Brodeur et 
al., 2010; Brodeur et al., 2014; Moreno-Martínez & Montoro, 2012), excluding images that were 
included in the CAT. Each item in the naming battery was characterized in terms of lexical 
frequency, number of phonemes, and age of acquisition (Balota et al., 2007; Brysbaert et al., 
2012; Kuperman et al., 2012) for the purposes of matching condition lists for difficulty. 

In order to manipulate stimuli variability in terms of picture exemplars, we selected three 
additional images for each item, including variations in either the item’s perspective, color, size, 
or number to ensure each picture was visually distinct. Two independent raters reviewed each 
additional image to ensure they were acceptable exemplars of the intended target. Exemplar 
images identified as problematic by either rater (e.g., not representative of the target image) were 
replaced by new images and re-evaluated until considered acceptable by both raters. All 
exemplar images were drawn from internet searches of images labeled public domain or creative 
commons reuse with modification. We also created a short verbal description prompt 
highlighting each item’s main characteristics. Two independent raters evaluated these verbal 
descriptions to ensure they were acceptable descriptions of the intended target. Descriptions 
identified as problematic by either rater (e.g., not an adequate description of the target word) 
were revised and re-evaluated until both raters considered them acceptable. As a result, all 362 
naming battery items had three additional picture exemplars and a verbal description prompt. 
This allowed any item to be selected for any condition to facilitate difficulty matching between 
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conditions for a given participant and provided an untrained picture exemplar for each item to 
assess within-level generalization during probes.  
 
2.4 Probe selection and administration 
Participants were asked to complete the 362-item naming battery of the original target images on 
two different occasions at least one day apart. Items were presented in random order on each 
occasion. We selected 160 items from those with an accuracy of ≤ 50% across testing points for 
each participant. To match production difficulty across conditions, we used a published 
algorithm that provides weights based on word frequency, number of phonemes, and age of 
acquisition (Fergadiotis et al., 2015). We calculated the resulting difficulty score for each item. 
Then, items were divided into four groups (three experimental conditions and a control group) by 
arranging them in order of difficulty and sequentially assigning them into each group to ensure 
they contained the same range and density of difficulty scores for each participant.  

Treatment probes consisted of a confrontation naming task assessing trained and 
untrained picture exemplars of treated words and untrained control words. Trained picture 
exemplars of treated words assessed direct treatment effects; untrained picture exemplars of 
treated words assessed within-level generalization; untreated words served as a control condition 
to distinguish treatment effects from simple probe exposure. Treatment effects were assessed in 
terms of initial acquisition (naming performance up to the one-week follow-up) and retention (up 
to the three months follow-up). Naming accuracy was scored online during probe administration 
and was confirmed and hand-corrected offline by a second independent rater using an audio 
recording of the session. Raters were not blinded to time points or study hypotheses, although the 
second rater was blinded to experimental conditions.  

There were 120 treated words with two pictures per word (one trained, one untrained) 
and 40 untrained control words with one picture per word, for a total of 280 probe pictures. 
Trained picture probes were provided as part of the flashcard “answer” for each target (Figure 2). 
Only one of the three trained pictures was probed in the high exemplar variability condition. 
Untrained picture probes were not provided during treatment.  

Pictures were pseudo-randomized into two lists, each containing 140 pictures: 60 trained 
picture exemplars, 60 untrained picture exemplars, and 20 untreated control pictures. We 
administered both lists in a single session during baseline and follow-up and in alternative 
sessions during the treatment phase to reduce the overall testing burden and exposure effects. 
Probes were administered using PsychoPy 2 version 2.0.44 (Peirce et al., 2019) on a Dell laptop 
computer.  
 
2.5 Treatment administration 
Treatment started with two weeks of initial training. Each of these weeks had two sessions 
focused on ensuring that participants knew how to use Anki and how to complete each step of 
the flashcard practice with fidelity and independence (which was required for the second stage of 
enrollment). Training relied on systematic instruction techniques (Mateer & Sohlberg, 2003; 
Sohlberg & Turkstra, 2011) provided by the senior author. 



9 
 

For participants who met the criteria for continued enrollment, the initial two weeks of 
training were followed by ten weeks of combined synchronous practice (in-person or online) and 
asynchronous independent home practice. This treatment approach was designed to reflect a 
clinically feasible treatment design and was based on a case report using Anki in the clinic for an 
individual with primary progressive aphasia (Evans et al., 2016). Synchronous practice sessions 
lasted up to 60 minutes per session or until they ran out of scheduled flashcard reviews, which 
allowed for reinforcement of the treatment steps for home practice and provided an opportunity 
to administer weekly probes. The independent home practice was asynchronous (Cherney et al., 
2011), and participants were instructed to practice at least four days a week for at least 20 
minutes a day (or until they ran out of flashcards scheduled for that day).  

The anomia treatment consisted of flashcard-based distributed practice in which 
participants attempted to effortfully retrieve (Middleton et al., 2016) target words in response to 
cues (pictures or verbal descriptions). Specifically, in each trial, participants saw a picture or 
written prompt of the target in Anki and attempted to name it with a single complete response, 
then pressed “show answer” to see and hear the target’s correct form along with its trained 
picture. They then self-rated their performance as accurate or inaccurate by pressing the “good” 
(correct) or “again” (incorrect) buttons, which adaptively adjusted the future scheduling of the 
flashcard (Figure 2). Whenever they could not name the word accurately, they were asked to 
listen to the target (by clicking a “replay audio” button) and repeat it three times correctly before 
self-rating their performance as inaccurate and moving on to the next practice trial. 

As noted above, participants had to demonstrate the ability to complete all treatment steps 
with fidelity and independence by the end of the four initial synchronous practice sessions to 
continue study enrollment. These steps consisted of being able to a) attempt to name the target in 
response to the initial prompt, b) click “show answer” after making an attempt, and c) being able 
to self-rate performance with ≥85% accuracy (which was crucial to ensure appropriate flashcard 
scheduling based on the adaptive algorithm). 

Anki has a number of settings that can be specified. Flashcards in the “active learning” 
state need to be answered correctly a certain number of times before being categorized as 
“learned.” We set the adaptive distributed practice parameters such that words needed to be 
answered correctly three times in a row (immediately, then at one-minute, and five-minute 
intervals) to be categorized as learned. Once a flashcard was categorized as “learned,” it was 
automatically scheduled at ever-increasing intervals (up to a maximum set at 15 days). Intervals 
continue to increase to the maximum until answered incorrectly, at which point the flashcard 
returned to the “active learning” state, requiring three correct responses in a row before returning 
again to the “learned” expanding interval state. Up to 24 new flashcards were provided per day.  
 
2.6 Analyses   
Bayesian generalized linear mixed-effects models were used to evaluate change in naming 
accuracy, modeled separately by participant. Bayesian analyses are advantageous because they 
match researchers’ general interpretation of statistical results as “the probability of a hypothesis 
given the data,” which is a misinterpretation of p-values in the frequentist framework. This 
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approach also characterizes the uncertainty of the effects of interest through posterior 
distributions and their credible intervals (e.g., a 90% credible interval can be interpreted as a 
90% probability that an effect falls within the interval; see Kruschke & Liddell, 2018). Analyses 
were completed using Stan (Carpenter et al., 2017; Stan Development Team, 2020) accessed via 
the BRMS package (Bürkner, 2018) using the R statistical software version 4.0.2 (R Core Team, 
2020). Data and analysis scripts for the following analyses have been made publicly available at 
https://osf.io/sfutm.  

For all models, a Bernoulli probability distribution with a logit link function was used to 
model trial-level responses (i.e., correct and incorrect naming attempts). All models included 
weakly informative priors for all beta coefficients using a student-T distribution (3 degrees of 
freedom, mu = 0, and sigma = 2.5). This prior is characterized by a symmetrical distribution 
roughly between -5 and 5 logits centered around zero (no effect), which comprises a reasonable 
range of values for all beta coefficients. Default BRMS priors were used for all other aspects of 
these analyses. A visual prior predictive check was used to ensure that these priors characterized 
reasonable possible estimates.  

For prediction 1 analyses, we evaluated the initial efficacy of adaptive distributed 
practice as an efficient method for acquiring, generalizing, and retaining more words than is 
typically targeted in anomia treatment research (collapsing across experimental conditions). For 
this purpose, models were fit to describe performance across study timepoints and then used to 
estimate effect sizes in terms of the number of words acquired between treatment baseline and 
treatment exit (measured at 1-week post-treatment) and the number of words retained between 
treatment exit and follow-up. We chose the number of words acquired and retained as an 
unstandardized measure of effect size because it maps directly to our prediction, is interpretable 
for clinicians, and it allows the comparison of treatment efficacy between anomia studies in 
functional terms (i.e., how many words were gain in relation to how much time was spent in 
treatment). Moreover, this choice of effect size is based on a well-established model structure 
(Baek et al., 2014; Huitema, 2011; Huitema & McKean, 2000) and builds upon previous work in 
our field (e.g., Swiderski et al., 2021; Wiley & Rapp, 2019). 

For acquisition and generalization, we implemented interrupted time series models 
described by Huitema and McKean (2000). To examine acquisition effects, we modeled item-
level responses for all trained pictures during the baseline and treatment phases. To examine 
within-level generalization effects, we modeled item-level responses for untrained pictures of 
trained items during the baseline and treatment phases. The interrupted time series model 
structure has population-level2 effects (often described as “fixed effects” in the frequentist 
framework) for baseline slope, level change, and slope change. Baseline slope characterizes the 
presence of a stable, rising, or declining trendline during the baseline phase. Level change 
characterizes the immediate change in naming performance at the onset of treatment (i.e., the 

 
2 Since models were run separately by participant, the “population” here refers to the item level, in this case, 
picturable nouns in English. In other words, analyses allow us to draw inferences about how these particular people 
with aphasia would respond to training for any similar words in English, which is appropriate for the case study 
approach employed here.   
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difference between the baseline and treatment trendlines at the first treatment probe). Slope 
change assesses whether the trendline during the treatment phase differs from the trendline 
during the baseline phase. Positive level and slope changes provide evidence of treatment effects 
(i.e., changes in performance over time attributable to treatment).  

Each model was also evaluated with a quadratic slope change term to account for a 
substantial non-linear change in naming accuracy during treatment (e.g., a diminishing rate of 
improvement over time). We compared models with and without this quadratic term using Bayes 
factors (Rouder et al., 2009). The more parsimonious model without the quadratic term was used 
unless the Bayes factor indicated at least moderate (>3) evidence of better fit (Jeffreys, 1998). 
The interrupted time series model was also applied to untreated words to establish experimental 
control. There are a number of benefits of using this modeling approach, including specific 
model-based checks for distinguishing between rising baseline performance and treatment-
related change (e.g., Evans et al., 2021). However, for the current case study, we applied this 
approach to determine whether effect sizes fit our data (full model results are available at 
https://osf.io/sfutm).  

We estimated effect sizes from each model by taking the difference in the posterior 
distributions for the estimated number of words correct between treatment exit and the last 
baseline probe. Hence, effect sizes represent an estimate of the median number of words gained 
between these time points, accompanied by a 90% credible interval for each participant.   

To examine retention, the model for each participant included population-level effects for 
timepoint (probe sessions at treatment exit, one-month, and three-month follow-up, with 
treatment exit as the reference level), stimulus item type (trained versus untrained exemplars, 
with trained as the reference level), and their interaction. The random effects for these models 
included a random intercept for items and a random slope for timepoint. Effect sizes were 
estimated using the same method, taking the difference in performance between one-month 
follow-up and treatment exit, and three-month follow-up and treatment exit. As a result, retention 
effect sizes with a negative value reflect the number of words forgotten from treatment exit to a 
given follow-up time point.  

For prediction 2 analyses, we examined the effects of stimuli variability in acquisition, 
within-level generalization, and retention from sessions 3 to 16 (from the last baseline to 1-week 
follow-up) to determine if increasing stimuli variability improves treatment outcomes to a 
practically meaningful extent.  

For acquisition and generalization, models included population-level effects for session 
(last baseline session to the first follow-up session) and condition (high exemplar variability, low 
exemplar variability, verbal description, with low exemplar variability as the reference level), 
and their interaction. With this approach, interaction effects tested whether, compared to the low 
exemplar variability condition, the higher stimulus variability conditions (high exemplar 
variability or verbal description) resulted in greater differences in treatment response during 
treatment. The random effects for these models included a random intercept for items and a 
random slope for session. To examine acquisition effects for this question, we modeled item-
level responses for trained pictures during the treatment phase. To examine within-level 
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generalization effects, we modeled item-level responses for untrained pictures of trained items 
during the treatment phase.  

For retention, models included population-level effects for session (treatment exit, one-
month, and three-month follow-up, with treatment exit as the reference level), condition (same as 
above), and their interaction. The interaction effects tested whether, compared to the low 
exemplar variability condition, the higher stimulus variability conditions (high exemplar 
variability or verbal description) resulted in greater differences in retention. The random effects 
for these models included a random intercept for items and a random slope for session.  

Models were run separately by participants and stimuli item type, resulting in four 
models per participant. As a reminder, we addressed prediction 2 by evaluating the condition by 
session interaction terms reported in each model, resulting in a total of 12 interaction terms per 
participant (Table 3). Looking across these interaction terms provides statistical tests of whether 
stimuli variability affected treatment outcomes (measured in terms of acquisition, one-month 
retention, and three-month retention) for direct training and generalization (see complete model 
structures and output at https://osf.io/sfutm).  

To determine whether interaction effects reflected a meaningful difference, we used the 
Region of Practical Equivalence (ROPE; Kruschke & Liddell, 2018). ROPE allowed us to set 
stringent criteria to assess whether increasing stimuli variability would have a large enough 
effect on treatment outcomes to be practically relevant, not merely statistically reliable. The 
ROPE approach allows redefining the null hypothesis from a point-null hypothesis to a range of 
values considered small to have practical significance. In other words, rather than testing 
whether a number is different from zero, ROPE defines a range of values for which the effect 
would be considered, practically speaking, no different from zero (combining significance 
testing with effect sizes; see Harms & Lakens, 2018; Makowski et al., 2019). Thus, we used 
ROPE to evaluate null effects of stimuli variability (i.e., whether or not the lack of a reliable 
effect could be interpreted as an effect practically equivalent to zero). 

To define the range of ROPE values determined to be equivalent to the null region (i.e., 
practically equivalent to zero in terms of outcomes), we used a standardized probe value of ± 
0.18, as recommended by Kruschke (2018), which roughly corresponds to a negligible effect 
according to Cohen (1988). The ROPE range of parameters was then compared against the 
posterior distribution. If > 97.5% of the posterior distribution fell within the ROPE, the effect 
was considered practically equivalent to zero (i.e., “null effect”), indicating that effects were not 
large enough to warrant further consideration for clinical implementation. If < 2.5% of the 
posterior distribution fell outside the ROPE, the effect was considered practically meaningful 
and worthy of further consideration. ROPE percentages between these values were considered to 
provide uncertain evidence (see Kruschke & Liddell, 2018). We calculated ROPE using the R 
package BayestestR (Makowski et al., 2019).  
 
2.7 Model Convergence and Fit 
For all models, we ran four independent Hamiltonian Markov Chain Monte Carlo (MCMC) 
chains with 6000 iterations. The initial 1000 chains were used as a warmup and were not 
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included in the parameter’s estimation. We examined model convergence by checking the 
Gelman-Rubin Potential Scale Reduction statistic (ensuring that 𝑅"  values were less than or equal 
to 1.01), the number of effective samples (ensuring >400 effective samples), and trace plots. 
Model fit was examined using posterior predictive checks. Model details, including priors, model 
convergency, the number of effective samples, and posterior predictive checks, are available in 
the OSF link provided above.  
 
3. Results  
Seven people with aphasia were recruited, three of which met the first stage criteria for initial 
enrollment and two of which met the second stage criteria for enrollment in treatment 
(participants 1 and 2, see Table 1 for demographic information). The four people with aphasia 
who did not meet initial enrollment criteria were excluded based on very mild CAT 
performance.3 The person who did not meet the second enrollment stage was excluded due to 
difficulties demonstrating fidelity to the treatment steps necessary for independent practice 
(including accurate self-rating of responses). For fully enrolled participants 1 and 2, apraxia of 
speech was absent as measured by the Duffy protocol (Duffy, 2005). Assessments and study 
procedures were administered in-person for participant 1, except for his last two follow-up 
sessions, which had to shift to an online format due to pandemic-related restrictions. Also, 
follow-up sessions for this participant coincided with the onset of COVID-19 in the US, which 
led to a delay in the planned assessment intervals (the first follow-up session was completed 11 
days post-treatment, the second 2 months post-treatment, and the third 3 months post-treatment). 
All assessments and study procedures were administered via Zoom for participant 2. Both 
participants completed the planned number of baselines, treatment, and follow-up sessions 
without any adverse events.  
 
Table 1. Participant Demographics 

Participant Age 
(years) Race1 Gender2 Education 

(years) MPO3 Handedness4 

1 50 AA; NA M 14 24 R 
2 53 C M 18 18 L 

Notes. 1AA=African-American, NA=Native American, C=Caucasian; 2M=Male, F=Female; 
3MPO=months post-onset; 4Handedness R=right, L=left.  
 
 
 
 
 

 
3 One of our primary referral sources, Pitt+Me, recruited individuals based on an aphasia diagnosis generally entered 
into their medical record during their initial episode of care. Therefore, many of the individuals we recruited had 
mostly or completely resolved aphasia by the time of initial testing.  
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Table 2. Language assessments  
 Comprehensive Aphasia Test T-Scores CCT1 

Participant Comp. 
Spoken2 
(cutoff 
56) 

Comp.
Written3 

(cutoff 
59) 

Rep4 

(cutof
f 59) 

Naming 
(cutoff 
62) 

Reading 
(cutoff 
57) 

Writing 
(cutoff 
57) 

Mean Total 
Correct 
(cutoff 

56) 
1 50 50 32 54 49 46 46.8 52 
2 38 43 48 48 49 48 45.7 50 

Notes. 1Camel and Cactus Test (CCT; Bozeat et al., 2000);  2Comprehension of Spoken 
Language; 3Comprehension of Written Language; 4 Repetition. The tests’ cutoffs are shown in 
parenthesis (all participant scores are below the cutoffs).  
 

 
Figure 3. Raw probe data for participant 1 (top row) and participant 2 (bottom row). This 

figure depicts probe naming accuracy during the 3 baselines, 12 treatment sessions, and 3 follow-
up sessions. The high exemplar variability condition is depicted in red and squares. The low 
exemplar variability condition is depicted in green and circles. The verbal description condition is 
depicted in purple and diamonds. The untreated control condition is depicted in light blue and 
triangles. Each condition included 40 items, for a total of 120 treated and 40 control items (total n 
=160 items per participant). 
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 During the treatment phase, participant 1 spent a total of 5.4 hours practicing Anki during 
one-on-practice synchronous treatments sessions, and 8.6 hours practicing Anki independently, 
for a total of 14 hours of practice (as retrieved from Anki logs). Participant 2 spent a total of 7.5 
hours practicing Anki during one-on-practice synchronous treatments sessions, and 16.4 hours 
practicing Anki independently, for a total of 23.9 hours of practice (as retrieved from Anki logs). 
These differences in total practice time were due to differences in average trial time and the total 
number of reviews (participant 2 took longer on average per trial and had lower average trial 
accuracy, leading to more scheduled reviews). Participant 1 completed 3844 practice trials, with 
an average of 230.4 trials per week. Participant 2 completed 4918 practice trials, with an average 
of 309.2 trials per week. 
 
3.1 Prediction 1 results  
In terms of treatment acquisition, effect sizes and credible intervals revealed that, out of 120 
trained words, participant 1 acquired 77.24 direct training probes (i.e., trained pictures of trained 
words) across experimental conditions (90% CI = [72.48, 82.68]) and acquired 63.25 within-
level generalization probes (i.e., untrained exemplars of trained words, 90% CI = [57.27, 69.06]). 
He showed no meaningful or statistically reliable improvements on untreated control probes, 
with credible intervals including zero words gained for this condition (effect size: 2.40 words, 
90% CI = [-0.47, 5.17]). Effect sizes for participant 2 showed that he acquired 57.62 direct 
training probes across experimental conditions (90% CI = [50.94, 64.25]) and 48.06 within-level 
generalization probes (90% CI = [40.83, 55.37]). He showed no improvement on untreated 
control probes (effect size: -2.65 words, CI = [-5.96, 0.63]). 

In terms of treatment retention, effect sizes revealed that participant 1 forgot 8.88 direct 
training probes (90% CI = [-14.23, -3.16]) at one-month post-treatment, and 12.94 direct training 
probes at three months post-treatment (90% CI: [-18.54, -7.10]) when compared to initial 
acquisition effect sizes. He forgot 1.60 within-level generalization probes at one month post-
treatment (90% CI: [-8.27, 5.25]) and 14.49 at three months post-treatment (90% CI = [-21.64, -
7.14]). Participant 2 forgot 10.44 direct treatment probes (90% CI: [-19.39, -1.62]) at one month 
post-treatment, and 2.67 direct treatment probes at three months post-treatment (90% CI: [-10.97 
5.42]). He forgot 6.14 within-level generalization probes at one month post-treatment (90% CI: 
[-15.06, 3.11]) and 4.08 at three months post-treatment (90% CI: [-12.31, 4.19]). Model fixed 
effects support this interpretation of effect sizes, with robust effects for slope change and level 
change, indicating that naming gains can be attributed directly to the treatment (see full 
interrupted time series model results at ). 

There was no statistically reliable change in untrained control probes performance for 
participant 1 (2.40, 90% CI = [-0.47, 5.17]) or participant 2 (-2.65, 90% CI = [-5.96, 0.63]), 
suggesting no effect of repeated probe exposure. 
 
3.2 Prediction 2 results  
In most cases, the two-way interaction models testing for differences in stimuli variability on 
treatment response for acquisition, retention, direct training, and within-level generalization 
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showed uncertain or robustly null results with small effect sizes. Table 3 reports estimates, 
credible intervals, and the ROPE for all two-way interaction effects (complete model results 
available at https://osf.io/sfutm). The only practical effect (i.e., exceeded ROPE) was found in 
the retention of direct training for participant 2, where words trained in the low variability 
condition were better retained at 1-month follow-up. However, this difference was smaller at the 
3-month follow-up, where it did not reliably exceed the ROPE (See Figure 2). Taken together, 
these results indicate that stimuli variability did not lead to practically meaningful differences in 
treatment outcomes for participants 1 and 2.   

 
Table 3. Interaction effects for prediction 2 

ID  Models Interaction term  Estimate 90% CI ROPE Interp. 

1 

Acquisition of 
direct training 

timepoint (sessions 3 to 16) by 
stimuli variability (low vs. high) -0.09 -0.33, 0.16 70.5% uncertain 
timepoint (sessions 3 to 16) by 
stimuli variability (low vs. verbal) 0.02 -0.22, 0.27 77.2% uncertain 

Acquisition of 
within-level 

generalization 

timepoint (sessions 3 to 16) by 
stimuli variability (low vs. high) -0.07 -0.33, 0.18 71.4% uncertain 
timepoint (sessions 3 to 16) by 
stimuli variability (low vs. verbal) 0.29 0.02, 0.58 25.7% uncertain 

Retention of 
direct training 

timepoint (session 17) by stimuli 
variability (low vs. high) -0.12 -2.28, 2.02 11.6% uncertain 
timepoint (session 18) by stimuli 
variability (low vs. high) 0.56 -1.62, 2.89 10.7% uncertain 
timepoint (session 17) by stimuli 
variability (low vs. verbal) 0.58 -1.94, 3.47 9.5% uncertain 
timepoint (session 18) by stimuli 
variability (low vs. verbal) 0.22 -2.26, 2.95 9.9% uncertain 

Retention of 
within-level 

generalization 

timepoint (session 17) by stimuli 
variability (low vs. high) -0.01 -1.92, 1.95 12.8% uncertain 
timepoint (session 18) by stimuli 
variability (low vs. high) 0.74 -1.49, 3.25 10.2% uncertain 
timepoint (session 17) by stimuli 
variability (low vs. verbal) 0.08 -2.11, 2.39 11.1% uncertain 
timepoint (session 18) by stimuli 
variability (low vs. verbal) -0.12 -2.50, 2.61 10.2% uncertain 

2 

Acquisition of 
direct training 

timepoint (sessions 3 to 16) by 
stimuli variability (low vs. high) -0.03 -0.14, 0.07 98.7% null effect 
timepoint (sessions 3 to 16) by 
stimuli variability (low vs. verbal) -0.03 -0.13, 0.08 98.9% null effect 

Acquisition of 
within-level 

generalization 

timepoint (sessions 3 to 16) by 
stimuli variability (low vs. high) -0.07 -0.18, 0.04 94.6% uncertain 
timepoint (sessions 3 to 16) by 
stimuli variability (low vs. verbal) -0.04 -0.15, 0.07 97.9% null effect 
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Retention of 
direct training 

timepoint (session 17) by stimuli 
variability (low vs. high) -1.88 -4.60, 0.24 4.4% practical 

effect 
timepoint (session 18) by stimuli 
variability (low vs. high) -0.60 -3.28, 1.95 9.4% uncertain 
timepoint (session 17) by stimuli 
variability (low vs. verbal) -0.42 -2.66, 1.64 11.9% uncertain 
timepoint (session 18) by stimuli 
variability (low vs. verbal) 0.23 -2.33, 2.81 10.3% uncertain 

Retention of 
within-level 

generalization 

timepoint (session 17) by stimuli 
variability (low vs. high) 0.20 -2.22, 2.44 11.4% uncertain 
timepoint (session 18) by stimuli 
variability (low vs. high) 0.02 -2.53, 2.52 10.7% uncertain 
timepoint (session 17) by stimuli 
variability (low vs. verbal) -0.26 -2.65, 1.99 11.9% uncertain 
timepoint (session 18) by stimuli 
variability (low vs. verbal) -1.01 -3.87, 1.57 8.2% uncertain 

 
Notes: ID = participant. Interaction term “timepoint” = includes the treatment and follow-up 
sessions (model sessions are shown in parenthesis, with sessions 3-16 reflecting the treatment 
phase, session 17 reflecting ~1-month retention, and session 18 reflecting ~3-month retention); 
Interaction term “stimuli variability” =  refers to the conditions included in each interaction (low 
exemplar variability, high exemplar variability, verbal description). ROPE = Region of Practical 
Equivalence (this column represents percentages inside ROPE). Interpretation = If > 97.5% of 
the posterior distribution falls within the ROPE, the effect is considered null.  If < 2.5% of the 
posterior distribution falls outside the ROPE, the effect is considered practically meaningful. 
ROPE percentages between these values are considered to provide uncertain evidence. Interp. = 
interpretation. 
 
4. Discussion 

 
While previous anomia treatment research has focused on training small sets of words (e.g., 47 
words on average; Snell et al., 2010) in the hopes of inducing generalization (see examples of 
such studies in Boyle, 2010; Boyle, 2011), the current work tested a novel alternative: training a 
larger set of words, in a time-efficient manner, to engender long-term retention and within-level 
generalization. We did so by employing a retrieval-based anomia treatment using Anki open-
source flashcard software, which incorporates adaptive distributed practice. We implemented this 
treatment using a clinically feasible self-managed treatment paradigm combining synchronous 
and asynchronous practice. We predicted that the intervention would lead to efficient acquisition, 
retention, and within-level generalization for more words than are typically targeted in anomia 
treatment research. Since generalization of trained exemplars to untrained exemplars (i.e., 
within-level generalization) is a crucial goal of anomia treatment, we also varied stimuli 
variability within participants, training sets of words using either a single picture exemplar, 
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multiple picture exemplars or verbal description prompts. We predicted that increasing stimuli 
variability (i.e., more picture exemplars or verbal description) would improve within-level 
generalization for acquisition and retention. Research questions are discussed as follows.  
 
4.1 Does adaptive distributed practice using Anki flashcard software lead to efficient acquisition, 
retention, and within-level generalization for more words than typically targeted during anomia 
treatment research? 
 
Overall, direct training effects (measured on probe naming of trained picture exemplars for 
trained words) were large in both participants. Within-level generalization effects (measured on 
probe naming of untrained picture exemplars for trained words) were equally large. Participants 
1 and 2 acquired an average of 67.43 trained picture exemplars when probed immediately after 
treatment and retained an average of 59.61 trained picture exemplars three months post-treatment 
(i.e., ~50% of the 120 words trained). In terms of within-level generalization, participants 
acquired an average of 55.65 untrained picture exemplars and retained 46.37 untrained 
exemplars three months post-treatment.  

Compared to previous anomia treatment approaches, these effect sizes are large and 
suggest treatment efficiency. For example, Kendall et al. (2019) provide rough outcomes 
benchmarks for existing semantically- and phonologically-oriented anomia treatments. 
Specifically, Kendall et al. (2019) compared the effectiveness of Phonomotor Treatment (PMT, 
Kendall et al., 2008) and Semantic Feature Analysis (SFA, Boyle & Coelho, 1995). They 
administered 56-60 hours of PMT or SFA to 58 participants with aphasia in a between-group 
randomized control trial. At three months post-treatment, they found that SFA led to an average 
retention effect of 12.4 trained words above baseline (+15.6% of the 80 trained probes) and a 
generalization effect of two related words above baseline (+5%). PMT led to an average effect of 
7 trained words above baseline (+18% of 39 trained probes) and a generalization retention effect 
of 1 word above baseline (+4.4%).  

In contrast to the roughly 60 hours of treatment in Kendall et al. (2019), and as retrieved 
from Anki logs, participants in the current study completed an average of 6.5 hours of 
synchronous practice (and an average of 19 hours of total treatment, including independent home 
practice). This resulted in an average of 59.61 words retained at three months post-treatment, in 
contrast to the average of < 15 trained or related untrained words retained three months post-
treatment by participants in Kendall et al. (2019). Notably, SFA and PMT seek to improve 
treatment efficiency via generalization to all closely related untrained words (not just those 
probed). Therefore, Kendall et al.’s effect sizes may under-estimate their participants’ overall 
naming gains. However, our effect sizes and lower dosage suggest that direct training using 
adaptive distributed practice may be a feasible and treatment-efficient alternative to existing 
anomia treatment research, especially since it allows for the training of more words than 
typically targeted (e.g., 47 words on average;  Snell et al., 2010). 

Given the limited services available, considering treatment efficiency is important for 
clinical implementation. For example, stroke survivors with aphasia in Western Pennsylvania 
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receive only a median of 7.5 hours of outpatient aphasia treatment in their first year post-stroke 
(Cavanaugh et al., 2021), which allows for the implementation of our current study dosage. 
Additionally, while this approach does require more stimuli to be created than most word-finding 
treatments, our recommendation to clinicians is to guide people with aphasia and their families 
on how to continuously add personally relevant targets to Anki as their treatment progresses. 
Thus, the burden is not on the clinician to create hundreds of stimuli in their limited time. 
Instead, the person with aphasia and their family are empowered to choose treatment targets that 
are more meaningful to them. This patient-centered approach has been successfully implemented 
in the clinic for an individual with primary progressive aphasia (Evans et al., 2016). This lays out 
the potential impact of direct training approaches using self-managed flashcard software that 
may be implemented within the current constraints of outpatient clinical practice. However, 
additional candidacy factors come into play for this type of clinical implementation (e.g., patient 
language ability, level of family support). 

 
4.2 Does increasing stimuli variability lead to improved within-level generalization? 
We did not find any practically meaningful or statistically robust differences in treatment 
outcomes when comparing stimuli variability conditions. This result has implications for clinical 
feasibility since it indicates that the retention and within-level generalization effects, observed 
across experimental conditions, may be achieved while training a single picture exemplar.  
 Within-level generalization to untrained picture exemplars also suggests that this 
approach trains more than stimulus-response mapping between specific words and pictures. 
Instead, it improved lexical access for trained words (e.g., by strengthening lexical-semantic 
representations that can be elicited by untrained visual input). While assessing anomia treatment 
outcomes using multiple picture exemplars of trained words has not been previously evaluated in 
post-to aphasia research (to our knowledge), these findings are consistent with current theories 
regarding the nature of post-stroke anomia, in contrast to semantic dementia/ semantic variant 
primary progressive aphasia (Jefferies & Lambon Ralph, 2006).  
 
4.3 Clinical implications 

Our findings suggest that training people with aphasia to practice using self-managed 
flashcard software independently is an efficient use of limited clinic time. While we treated 
participants synchronously for a total of 12 treatment sessions in our study, participants 
independently completed all treatment steps with a high level of fidelity after only four initial 
training sessions. Therefore, it may take relatively little effort to establish a successful Anki 
home practice program in the clinic, allowing practicing clinicians to shift to other treatment 
targets.  

An additional advantage of implementing Anki open-source flashcard software in the 
clinic is that it is flexible, free, and widely accessible. It is fully customizable through settings 
and plugins, and has free versions available for both computers and Android devices. In addition, 
people with aphasia can be trained to make their own flashcards to ensure personal relevance, as 
demonstrated in a previous clinical case report (Evans et al., 2016). In addition, the software’s 
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multimedia flashcards may be customized to include pictures, text, audio, and video. Therefore, 
different treatment approaches could be implemented in future studies, such as verb-focused 
treatments, script training, writing treatments, etc.  

This implementation of adaptive distributed practice provides a bottom-up approach to 
precision medicine for anomia treatment. People with aphasia adaptively receive the amount of 
practice needed to ensure good acquisition and retention of specific words, which varies 
depending on specific patient and word-level characteristics. We suggest that this may be a way 
to provide a performance-based item-level optimal dose, which would be a substantial treatment 
innovation. This approach, where people with aphasia practice independently, and well-learned 
words are scheduled less frequently over time, may also provide a long-term practice option that 
addresses the limited retention often observed following anomia treatment (Menahemi-Falkov et 
al., 2021).  

One promising future direction would be to harness adaptive distributed practice to train 
more words than were targeted in the current study. We trained 120 words, primarily due to 
experimental design limitations (i.e., item development, probe selection, and probe 
administration time) and not due to limitations in how many words our participants could have 
practiced concurrently in a reasonable amount of time. Both participants showed good 
acquisition and retention over time, which led to progressively fewer scheduled reviews and 
minutes spent practicing per week. For example, in the final week of treatment, participant 1 
completed all scheduled reviews in 19.23 minutes (6.4 minutes average per day practiced). Since 
Anki allows automatically rolling in the practice of new items over time (e.g., up to 5 new 
flashcards per day), he likely could have continued to add new words while retaining acquired 
words via continued occasional reviews. This approach of gradually adding new words to 
increase the total number of words trained while maintaining old ones via adaptive distributed 
practice reflects an innovation in anomia treatment research. Standard anomia treatments 
typically target an average of 47 words (Snell et al., 2010). However, adaptive distributed 
practice could efficiently target hundreds (or perhaps even thousands) of words. With 
appropriate within-level generalization, this would impact everyday communication, as 2.000-
word families account for approximately 90% of day-to-day spoken English (Nation, 2006). 

 
5 Study Limitations 

 
There are four study limitations that should be considered. First, because Anki was not intended 
to be used with people with aphasia, it requires participants to self-rate their responses. This 
means that participants with poor error self-awareness are not ideal candidates for Anki as it 
currently stands. For example, participant 3 did not meet the second stage of enrollment criteria, 
as he was unable to learn to complete all treatment steps with fidelity and independence during 
initial training. This limitation is not unique to Anki, and is important for any self-managed 
computer-based treatment. Other challenges when using home-based practice via computers and 
tablets include lack of familiarity with technology (Kurland et al., 2014), motivation, cognition, 
expectations, family support (Chen & Bode, 2011) and the less dynamic and flexible nature of 
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computer-based treatments relative to clinician-led practice. Second, while we examined within-
level generalization to untrained picture exemplars, we did not assess across-level generalization 
to functional contexts (e.g., conversation). Future work should consider generalization more 
broadly to ensure that the treatment leads to gains in everyday communication. Third, this study 
does not compare adaptive vs. non-adaptive treatment; thus, the causal benefit of adaptivity is 
not being tested, which will require a future comparative effectiveness trial. Fourth, while these 
case studies are promising and demonstrate treatment feasibility, they require replication in well-
powered group clinical trials to ensure that results are generalizable to the population of people 
with aphasia. 
 
6 Conclusions 

 
The current single case design suggests that self-managed computer-based flashcard software 
which incorporates adaptive distributed practice is an effective way to acquire and retain more 
words than are typically targeted during anomia treatment. Treatment resulted in within-level 
generalization across experimental conditions, indicating improved lexical access beyond what 
could be attributed to specific word-picture stimulus-response mapping. This approach has 
promise for precision medicine and training more words than were targeted here, but larger-scale 
clinical trials are required to replicate and extend these effects. Finally, this treatment relies on 
freely available open-source flashcard software and self-managed asynchronous telepractice 
(Cherney et al., 2011), making it feasible for real-world clinical implementation.  
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